skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paladini, Roberta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Anomalous microwave emission (AME) is a major component of Galactic emission in the frequency band 10–60 GHz and is commonly modelled as rapidly rotating spinning dust grains. The photodissociation region (PDR) at the boundary of the $$\lambda$$-Orionis H ii region has been identified by several recent analyses as one of the brightest spinning dust-emitting sources in the sky. We investigate the Barnard 30 dark cloud, a dark cloud embedded within the $$\lambda$$-Orionis PDR. We use total-power observations of Barnard 30 from the CO Mapping Array Project (COMAP) pathfinder instrument at 26–34GHz with a resolution of 4.5 arcmin alongside existing data from Planck, WISE, IRAS, ACT, and the 1.447 GHz GALFACTS survey. We use aperture photometry and template fitting to measure the spectral energy distribution of Barnard 30. We find that the spinning dust is the dominant emission component in the 26–34GHz range at the $$6\, \sigma$$ level ($$S_{30\, \mathrm{GHz}} = 3.35\pm 0.56$$ Jy). From correlating COMAP data with dust templates we find no evidence that polycyclic aromatic hydrocarbons are the preferred carrier for the spinning dust emission, suggesting that the spinning dust carriers are due to a mixed population of very small grains. Finally, we find evidence for variations in spinning dust emissivity and peak frequency within Barnard 30, and that these variations are possibly driven by changes in dust grain population and the total radiation field. Confirming the origin of the variations in the spinning dust spectrum will require both future COMAP observations at 15 GHz combined with spectroscopic mid-infrared data of Barnard 30. 
    more » « less
  2. Abstract The CO Mapping Array Project (COMAP) aims to use line-intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive to CO(1–0) emission from z = 2.4–3.4 and a fainter contribution from CO(2–1) at z = 6–8, the Pathfinder is surveying 12 deg 2 in a 5 yr observing campaign to detect the CO signal from z ∼ 3. Using data from the first 13 months of observing, we estimate P CO ( k ) = −2.7 ± 1.7 × 10 4 μ K 2 Mpc 3 on scales k = 0.051 −0.62 Mpc −1 , the first direct three-dimensional constraint on the clustering component of the CO(1–0) power spectrum. Based on these observations alone, we obtain a constraint on the amplitude of the clustering component (the squared mean CO line temperature bias product) of Tb 2 < 49 μ K 2 , nearly an order-of-magnitude improvement on the previous best measurement. These constraints allow us to rule out two models from the literature. We forecast a detection of the power spectrum after 5 yr with signal-to-noise ratio (S/N) 9–17. Cross-correlation with an overlapping galaxy survey will yield a detection of the CO–galaxy power spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic plane and present a preliminary map. Looking to the future of COMAP, we examine the prospects for future phases of the experiment to detect and characterize the CO signal from the EoR. 
    more » « less
  3. Abstract We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° <ℓ< 40° in Galactic longitude and ∣b∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of Hiiregions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact Hiicontributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will spanℓ∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4.′5 resolution. 
    more » « less